Ends of Undergraduate Research

To what ends ought undergraduate research at our college of health sciences aim? Our students should certainly learn research methods, research practices, styles of reasoning, research ethics, and means of publishing/communicating their findings. Though many students will not become research scientists themselves, they ought to have experience with the methods, practices, pitfalls, biases, publicity, and promotion of rigorous inquiry. In their future roles as professional health practitioners, they must parse the evidence, findings, and recommendations of researchers—in the sciences, social sciences, and humanities. Thus, experience as a quasi-independent researcher, however rudimentary, offers students an opportunity to understand the perspectives of professional researchers in significant ways.

Measurable outcomes of course-based undergraduate research experiences (CUREs) include laboratory reports, posters, oral presentations, audio-visual presentations, papers, and critical analyses of the explicit and implicit paradigms—including procedures—that provide the foundation for professional work in the particular fields of study that they investigate. CUREs provide students with formative education on and practice with investigate techniques and evaluative methods that foster the kinds of problem-solving and critical thinking skills that students will need as undergraduates and beyond.

Should students choose a profession in the health sciences, CUREs will expose them to the abductive reasoning strategies that health professionals use in their daily practice. From medical diagnoses to evaluation of treatment plans, health practitioners must reason from an incomplete set of observations and processes to the likeliest possible explanation(s). Course-based undergraduate research experiences (CUREs) permit students to explore topics in greater depth than they would through typical introductory science courses and labs. CUREs require students to engage research questions more independently than they might in a typical undergraduate laboratory environment because students will have a role in designing the study. Working directly with faculty to learn research methods and theory will enable students to devise appropriate questions that their research will address. Further, they will collect the data, evaluate the information, and communicate the results through papers, posters, and interactive talks.

Inquiry into the historical, sociological, and philosophical underpinnings of the specific disciplines/fields that students will investigate will, additionally, serve manifold functions. First, such scrutiny will disabuse students of the notion that current scientific and technological practices and aims develop deterministically and teleologically: many such advancements occur despite the separate, even contradictory, goals of those practitioners actually doing the work.

When students are alive to the open-endedness of inquiry, they are unfettered by constraints that Whig historiography—the style often portrayed in scientific textbooks—engenders: scientific ‘progress’ is inevitable; science is self-correcting; there exists a uniform, cumulative path from previous theories to present perspectives. Instead, students ought to learn that unanticipated answers are not necessarily ‘wrong.’ They will, first-hand, appreciate that even work that fails to yield further funding, marketable technologies, novel approaches, and/or published results (acclaim) can be considered beneficial and useful. Descriptors like ‘correct’ and ‘incorrect’ are social constructions that accrue to investigations deemed worthy by specific actors—institutions, funding agencies, governments, societies (academic and lay), and politicians. Terms like ‘success’ and ‘failure’ have limited applications when one inquires to improve understanding, aptitude, and appreciation.

Second, students will appreciate that instrumental ends should not be considered the only valuable products of investigation. When students inquire to comprehend a topic/process in greater detail, they acquire a more robust conception of their object(s) of study. When, in the course of investigation, students hone their skills of observation and improve their dexterity in manipulating equipment/apparatuses, they prepare themselves for future work in evidence-based inquiry. Observation and experiment, hallmarks of most scientific methods, become habits that students will refine as they themselves develop. Students will not be evaluated on whether or not they produce the quality of work that professionals in the field might. Therefore, professors should be stoking the students’ creative and critical tendencies and aptitudes while introducing them to academic investigation, writing, and presentation styles.

Third, students will note that exemplary thinkers and practitioners critically examine, and revise, their core assumptions and perspectives. Through readings in the history and philosophy of science, students will learn the significance of contexts and background assumptions to scientific practice and technological development. How one approaches a problem/issue, including which techniques and methods are chosen, partly determines the outcome of experiments. Data, results, and findings do not ‘speak for themselves’—they form a piece of the scientist’s perspective that must be explained and defended. Through CUREs, students will demonstrate, for themselves, their peers, and future students, that even valid methods and results require critical interpretation and evaluation.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s